a2 United States Patent

Baldwin

US009349215B1

(10) Patent No.: US 9,349,215 B1
(45) Date of Patent: *May 24, 2016

(54)
(71)
(72)
(73)

")

@

(22)

(63)

(60)

(1)

(52)

MULTIPLE SIMULTANEOUS BIN SIZES

Applicant: ZiiL.abs Inc., Ltd., Hamilton (BM)

Inventor: David R. Baldwin, Surrey (GB)

Assignee: ZiiLLABS Inc., Ltd., Hamilton (BM)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/815,860

Filed: Jul. 31, 2015

Related U.S. Application Data

Continuation of application No. 10/903,671, filed on
Jul. 30, 2004, now Pat. No. 9,098,943.

Provisional application No. 60/533,813, filed on Dec.

31, 2003.

Int. Cl1.
GO6T 11/40
GO6T 120
GO6T 15/00
GO6T 17/20
G09G 5/36
GO6T 17/10
GO6T 15/04
GO6T 1/60
U.S. CL

(2006.01)
(2006.01)
(2011.01)
(2006.01)
(2006.01)
(2006.01)
(2011.01)
(2006.01)

CPC . GO6T 17/10 (2013.01); GO6T 1/60 (2013.01);
GO6T 15/005 (2013.01); GO6T 15/04 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,636,215 Bl 10/2003 Greene

6,717,576 Bl 4/2004 Duluk, Jr. et al.

9,098,943 Bl 82015 Baldwin
2002/0039100 Al 4/2002 Morphet

OTHER PUBLICATIONS

U.S. Appl. No. 10/903,671, Advisory Action mailed Sep. 11, 2014, 6
pgs.

U.S. Appl. No. 10/903,671, Examiner Interview Summary mailed
Sep. 11, 2014, 2 pgs.

U.S. Appl. No. 10/903,671, Final Office Action mailed Jun. 2, 2014,

31 pgs.
U.S. Appl. No. 10/903,671, Notice of Allowance mailed Mar. 26,
2015, 13 pgs.

Primary Examiner — Ulka Chauhan
Assistant Examiner — Schiller Hill
(74) Attorney, Agent, or Firm — Kwan & Olynick LLP

(57) ABSTRACT

Contflicts between the database-building and traversal phases
are resolved by allowing the database bin size to be different
from the display bin size. The database bin size is some
multiple of the bin display bin size, and when there are mul-
tiple display bins in a database bin, each database bin is
traversed multiple times for display, and the rasterizer dis-
cards primitives outside of the current display bin. This
allows a trade oft between memory bandwidth consumed for
database building and bandwidth consumed for display, par-
ticularly when the display traversal is done multiple of times.

18 Claims, 16 Drawing Sheets

Screen divided into bins Vertex Buffer
1M V0
Bin ar& /Sub bin \\2
database area used V3
is built for for display V4
V5
First link is implicit
' V_G 140
Bin Record ﬂ-;, 130
B o "
Prim 10
Prim 20 .
State Vi
T S_late
BinRecord £'v Prim 67
p Prim 103

120

Bin Record =
s 2

State

U.S. Patent May 24, 2016 Sheet 1 of 16 US 9,349,215 B1

‘ Screen divided into bins Vertex Buffer
VO
111 113
Bin area - Sub bin Q,’;
110
database area used V3
is built for \ for display Va4
V5
\ First link is implicit
ptt) W
/ Bin Record 130
B — .
Prim 10 .
Prim 20 .
State Vn
State
. Prim 67
Bin R;cord 5103
State
120 -
Bin Record
\ s

FIG. 1

U.S. Patent May 24, 2016 Sheet 2 of 16 US 9,349,215 B1

P20 Core Architecture Block Diagram

___ ®
Of!]
o || T&L Subsyste .
e [T =
of! 21" Clipping |
|y Vertex 1) Vertex |lo 7 |
‘g |Parameter | | Transform [2] [Vertex | Viewport || Polygon l ®
‘-f i @[] Generator [Transform [Mode | | ®
@l S |
<i S|| Vertex I i
RN || |_Shader !
:::::::::::::::f___-_'_-_____________—_'_—:____:_'_____"___‘___‘___"_____—:_‘::J\C)
{WID Subsystem [11 Visibility Subsystem g
i 1 | 1A160 !
| M0 WID Cache Ei +{ Vis Cache |
! : ii . 2
H h . . .
L:w WID Addr ﬂo WID Data HL,» Vis Addr ﬂ* Vis Setup p Vis Data H»@
Ve T Y ;
I OO)C.D)
(- ” 1 | Host Out
> | 1A195
o]
B [T L s j—
o
Sl SD Addr ﬂ» SD Setup [+ SD Data [Pixel Addr {H Pixel Data |
k=l | 1
E E @ 37 Ei ® ¥ - |+ E
: SD Cache |} Xe
| [1SD Subsystem 11SD Subsystem|__Cache |;
| M80 ST L N
—®
®

FIG. 1A-A

U.S. Patent May 24, 2016 Sheet 3 of 16 US 9,349,215 B1
P20 Core Architecture Block Diagram
® -®
| Binning Subsystem i
; 1A110 60 @ |
' Bin Bin Bin Bin '
® | Setup ['| Rasteriser|"| Manager Display | | ®
I y I
i Bin Write l
| Cache [~ i
©:E A g '0)
] |
i Y I
I PF l
i 9 Cache [~ |
| ¥y 1
| ! O]
©®-+{ Overlap p{ PFAddr ﬂ-' PF Data ! ®
! I 4
. ©).C. O N 5
KEY
— Message Stream <~ Read/Write Memory Interface
— Parameter Stream = Read Only Memory Interface
— Fragment Stream (® Feedback Connections
— Data Daisy Chain (a...e Wait For Completion,
— Request Daisy Chain f...g Bin Synchronization,
h context restore)
Deep FIFO
(2 deep ones not shown)
®- ©
c ®

FIG.1A-B

U.S. Patent May 24, 2016 Sheet 4 of 16 US 9,349,215 B1

P20 Core Architecture Block Diagram

©- 1A120_ g 1A145
J| Rect |}
Rasteriser
1A130\ 1A140 Context
& > ng]tﬁlge + Rasteriser P
(@)
O ,
[Fragment Subsystem { !
|
AT Frag |
| Cache |
; T) }
@ : | Fragment [— |
®- ; + Shader
| v 1 I
! Texture Filter Arbiter | 1
| 3 LY 3 %
| Texture Texture ||{ 1
| LOD LoD ||| !
: ¥ y :
; Texture Texture ||}
: Index Index |
;) 7 !
Texture | ! Texture |[{}l] Texture !
Format | ! | Primary |||[| Primary ||} |
T : Cache [[TH Cache [T
Texture | | * ¥ i
=|Secondary| i Texture Texture ,
Cache | | Filter Filter i
T |
o] | Fiter Pipe | | Filter Pipe | |
e ———— e _
Addr |
O+
®@--

FIG.1A-C

US 9,349,215 B1

Sheet 5 of 16

May 24, 2016

U.S. Patent

g} "Old

A 4

— ———— - ——— o~ ————

8018}
Spo
uobAjod

et

2019}
wojsuel|

Hodmaip

| —

Golgal
10}eJauas)

XaUaA

l—

mommmmmmn oy

*

019}
Buiddyo

IND

[—

20Lgl L0141
wiojsuel] | JIs)oWeIRY
pETET XaUap
00LV1
waysAsgng 191

—

US 9,349,215 B1

U.S. Patent May 24, 2016 Sheet 6 of 16
S ———
! Binning Subsystem
1
E | 1A110
; Bin Bin Bin Bin
—— Setup || Rasteriser [*{ Manager Display
i 1C111 1C112 10113 1C114
i Bin Write
: Cache
I 1C115
E
|
I
| h 4
| PF
! % Cache
j @ 1C118
! ¥
i | Overap || PFAddr PF Data
: 1C116 1C117 1C119
|
I @ed

e o e o o " "t e o o . . o i e e e o A o e e e e o ot ot o i o St S e e o e e e e . o e

U.S. Patent May 24, 2016 Sheet 7 of 16 US 9,349,215 B1

| I
| WID Subs |
! ystem |
| 1A150 @ i
| WID Data E
| 1D152 |
! |
| —
| I
! WID Addr WID Data |
T 1D159 10153 |
B——————v— !

FIG. 1D
e !
!]
| Visibility Subsystem @ |
| 1A160 |
i Vis Cache l
! 1E162 ;
!]
| I
| i |
! }
| Vis Addr VisSetup || VisData |
R 1E163 1E164 []
' I
|

U.S. Patent May 24, 2016 Sheet 8 of 16 US 9,349,215 B1

—— ——— —— — — T - -~ ———— —————— A ¥ T — i fia. o T - = —— — —— - —— " —- _— ——

r I
| Fragment Subsystem @ i
| 1A170 ;
] Frag !
| Cache !
i 1F172 o
| f ! A
i o Fragment |, Y
! Shader — 2
, " 1FITH —1 =
| L1 | E
i Texture Filter Arbiter 1F173 |2
i i 7 3 i i
| Texture Texture i
5 LOD LOD |
1 |
! ! I i
! i
i Texture Texture l
| Index Index E
1 |
I ! |
! | Texture [|L[| Texture i
| > Primary Primary |
E Cache IENN Cache A
! !
] T |
|
E Texture Texture |
! Filter Filter E
I
| | | i
|
| Filter Pipe 1F174 | | Fiter Pipe 1F174 | |
|

e ot e o e o 8 e . e — e e o = s — o ———— ——— ———— . — - — — — — — — —

U.S. Patent May 24, 2016 Sheet 9 of 16 US 9,349,215 B1
1 1 s I
1A170 Texture Texture
LoD LOD
1G171
¥ v
Texture Texture
Index
1G172 Index
v v
Texture Texture Texture
Format Primary [TTT Primary
1G177 Cache AL Cache Ry N—
T 1G173
Texture ! v
Secondary Tgﬁg:e Texture
Cache '
o1 16174 Filter
¥ L I
Texture Filter Pipe Filter Pipe
Addr «
1G175
FIG. 1G
N =
!_, SD Addr SDSetup | | SDData _j
: 1H181 1H184 1H183 :
1 |
a g
|
i SD Cache i
} 1H182 }
! SD Subsystem !
[} |
1 |
| |

1A180 @

U.S. Patent May 24, 2016 Sheet 10 of 16 US 9,349,215 B1

-
e R R |
| |
i Pixel Addr Pixel Data i
i~ 11191 iln 11192 "“l
|
© ,,
i Pixel
E Cache E
11193
l

U.S. Patent May 24, 2016 Sheet 11 of 16 US 9,349,215 B1

SYSTEM BUS 431

AN
BRIDGE/MEM
CONTROLLER MICROPROCESSOR
427 425
FEEARE e ManaGER
|
430 RAM 48
o M — L2 CACHE
FLASHINV MEMORY
455
DISPLAY VDA
450 451
449 _HDD
470
DISK I/F
FDD
465 475
CD-ROM
ROM - BIOS 480
453
PCMCIA AUDIO I/F SPEAKER
490 476 477
vV

US 9,349,215 B1

Sheet 12 of 16

May 24, 2016

U.S. Patent

(suiq-qnsou)
14V 40idd

¢ O+

«;c\%:

" (Gh)sn v:(el)in fﬁrm_\.rg:w_._
fo:@x o;@:w:\ vi(z)wn | ()8
v \

,mlm:m: /mﬁ?:w: ()| (z)s | ())s

US 9,349,215 B1

Sheet 13 of 16

May 24, 2016

U.S. Patent

(uiq 48d suiq - qns y buiwnsse)

£ 94
dyp | Ou
(g}) ??&\w: v: (e} Jien|v: (2} s :mw_f
KK\ dg | g
fe:ﬁ\@“;:w:\ ol QJ v:(4)sn ..mmim_f

v<(q)sn fv:w_._ (g i(g)s [() s

U.S. Patent May 24, 2016 Sheet 14 of 16 US 9,349,215 B1

BUILDING DATABASE

401\ per primitive J——

0\ per bin |

405 affected pixels

in this bin

407~] Add primitive to
that bins list.

409 No

Yes
411
N Next primitive

413 Last primitive

?

=D

FIG. 4

U.S. Patent May 24, 2016 Sheet 15 of 16 US 9,349,215 B1

RENDERING WITHOUT SUB-BINS

510~ | Get primitive from |
whole bin's list

\ 4

0] Paint pixels

Last
primitive
?

530

Yes

540\(Nextbin)

FIG. 5

U.S. Patent May 24, 2016 Sheet 16 of 16 US 9,349,215 B1

RENDERING WITH SUB-BINS

610 |
N Persub - bin I

A 4

620\ Get primitive from |
whole bin's list

Any
affected pixels
in respective
sub-bin

630

640\ Paint pixels I

Last
primitive
?

660 \CNext sub-bin)

FIG. 6

650

US 9,349,215 B1

1
MULTIPLE SIMULTANEOUS BIN SIZES

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/903,671, filed Jul. 30, 2004 and entitled,
“MULTIPLE SIMULTANEOUS BIN SIZES” which claims
priority from U.S. Provisional Application 60/533,813 filed
Dec. 31, 2003, the entirety of which are incorporated by
reference for all purposes.

FIELD OF THE INVENTION

The present inventions relate to computer graphics and,
more particularly, to a computer graphics rendering architec-
ture that utilizes multiple simultaneous bin sizes.

BACKGROUND AND SUMMARY OF THE
INVENTION

Background: 3D Computer Graphics

One of the driving features in the performance of most
single-user computers is computer graphics. This is particu-
larly important in computer games and workstations, but is
generally very important across the personal computer mar-
ket.

For some years, the most critical area of graphics develop-
ment has been in three-dimensional (“3D”) graphics. The
peculiar demands of 3D graphics are driven by the need to
present a realistic view, on a computer monitor, of a three-
dimensional scene. The pattern written onto the two-dimen-
sional screen must, therefore, be derived from the three-di-
mensional geometries in such a way that the user can easily
“see” the three-dimensional scene (as if the screen were
merely a window into a real three-dimensional scene). This
requires extensive computation to obtain the correct image
for display, taking account of surface textures, lighting, shad-
owing, and other characteristics.

The starting point (for the aspects of computer graphics
considered in the present application) is a three-dimensional
scene, with specified viewpoint and lighting (etc.). The ele-
ments of a 3D scene are normally defined by sets of polygons
(typically triangles), each having attributes such as color,
reflectivity, and spatial location. (For example, a walking
human, at a given instant, might be translated into a few
hundred triangles which map out the surface of the human’s
body.) Textures are “applied” onto the polygons, to provide
detail in the scene. (For example, a flat, carpeted floor will
look far more realistic if a simple repeating texture pattern is
applied onto it.) Designers use specialized modelling soft-
ware tools, such as 3D Studio, to build textured polygonal
models.

The 3D graphics pipeline consists of two major stages, or
subsystems, referred to as geometry and rendering. The
geometry stage is responsible for managing all polygon
activities and for converting three-dimensional spatial data
into a two-dimensional representation of the viewed scene,
with properly-transformed polygons. The polygons in the
three-dimensional scene, with their applied textures, must
then be transformed to obtain their correct appearance from
the viewpoint of the moment; this transformation requires
calculation of lighting (and apparent brightness), foreshort-
ening, obstruction, etc.

However, even after these transformations and extensive
calculations have been done, there is still a large amount of
data manipulation to be done: the correct values for EACH

10

15

20

25

30

35

40

45

50

55

60

65

2

PIXEL of'the transformed polygons must be derived from the
two-dimensional representation. (This requires not only
interpolation of pixel values within a polygon, but also correct
application of properly oriented texture maps.) The rendering
stage is responsible for these activities: it “renders” the two-
dimensional data from the geometry stage to produce correct
values for all pixels of each frame of the image sequence.

The most challenging 3D graphics applications are
dynamic rather than static. In addition to changing objects in
the scene, many applications also seek to convey an illusion of
movement by changing the scene in response to the user’s
input. Whenever a change in the orientation or position of the
camera is desired, every object in a scene must be recalculated
relative to the new view. As can be imagined, a fast-paced
game needing to maintain a high frame rate will require many
calculations and many memory accesses.

Background: Texturing

There are different ways to add complexity to a 3D scene.
Creating more and more detailed models, consisting of a
greater number of polygons, is one way to add visual interest
to a scene. However, adding polygons necessitates paying the
price of having to manipulate more geometry. 3D systems
have what is known as a “polygon budget,” an approximate
number of polygons that can be manipulated without unac-
ceptable performance degradation. In general, fewer poly-
gons yield higher frame rates.

The visual appeal of computer graphics rendering is
greatly enhanced by the use of “textures”. A texture is a
two-dimensional image which is mapped into the data to be
rendered. Textures provide a very efficient way to generate
the level of minor surface detail which makes synthetic
images realistic, without requiring transfer of immense
amounts of data. Texture patterns provide realistic detail at
the sub-polygon level, so the higher-level tasks of polygon-
processing are not overloaded. See Foley et al., Computer
Graphics: Principles and Practice (2.ed. 1990, corr. 1995),
especially at pages 741-744; Paul S. Heckbert, “Fundamen-
tals of Texture Mapping and Image Warping,” Thesis submit-
ted to Dept. of EE and Computer Science, University of
California, Berkeley, Jun. 17, 1994; Heckbert, “Survey of
Computer Graphics,” IEEE Computer Graphics, November
1986, pp. 56; all of which are hereby incorporated by refer-
ence. Game programmers have also found that texture map-
ping is generally a very efficient way to achieve very dynamic
images without requiring a hugely increased memory band-
width for data handling.

A typical graphics system reads data from a texture map,
processes it, and writes color data to display memory. The
processing may include mipmap filtering which requires
access to several maps. The texture map need not be limited to
colors, but can hold other information that can be applied to a
surface to affect its appearance; this could include height
perturbation to give the effect of roughness. The individual
elements of a texture map are called “texels”.

Awkward side-effects of texture mapping occur unless the
renderer can apply texture maps with correct perspective.
Perspective-corrected texture mapping involves an algorithm
that translates “texels” (pixels from the bitmap texture image)
into display pixels in accordance with the spatial orientation
of'the surface. Since the surfaces are transformed (by the host
or geometry engine) to produce a 2D view, the textures will
need to be similarly transformed by a linear transform (nor-
mally projective or “affine”). (In conventional terminology,
the coordinates of the object surface, i.e. the primitive being
rendered, are referred to as an (s,t) coordinate space, and the
map of the stored texture is referred to a (u,v) coordinate
space.) The transformation in the resulting mapping means

US 9,349,215 B1

3

that a horizontal line in the (x,y) display space is very likely to
correspond to a slanted line in the (u,v) space of the texture
map, and hence many additional reads will occur, due to the
texturing operation, as rendering walks along a horizontal
line of pixels.

One of the requirements of many 3-D graphics applications
(especially gaming applications) is fill and texturing rates.
Gaming and DCC (digital content creation) applications use
complex textures, and may often use multiple textures with a
single primitive. (CAD and similar workstation applications,
by contrast, make much less use of textures, and typically use
smaller polygons but more ofthem.) Achieving an adequately
high rate of texturing and fill operations requires a very large
memory bandwidth.

Background: Binning

A tiled, binning, chunking, or bucket rendering architec-
ture is where the primitives are sorted into screen regions
before they are rendered. This architecture allows all the
primitives within a screen region to be rendered together to
exploit the higher locality of reference to the z and color
buffers, thereby allowing more efficient memory usage typi-
cally by using only on-chip memory. This also enables other
whole-scene rendering opportunities such as deferred-ren-
dering, order-independent transparency, and new types of
antialiasing. In the present application, “transparent” is used
generally to designate anything with alpha <1.

The primitives and state are recorded in a spatial database
in memory that represents the frame being rendered. This is
done after any T&L processing so everything is in screen
coordinates. Ideally, no rendering occurs until the frame is
complete; however, it will be done early on a user flush if the
amount of binned data exceeds a programmable threshold or
if the memory set aside to hold the database is exhausted.
While the database for one frame is being constructed, the
database for an earlier frame will be rendered.

The screen is divided up into rectangular regions called
bins, and each bin heads a linked list of bin records that hold
the state and primitives that overlap with this bin region. A
primitive and its associated state may be repeated across
several bins. Vertex data is held separately and is not repli-
cated when a primitive overlaps multiple bins to allow more
efficient storage mechanisms to be used. Primitives are main-
tained in temporal order within a bin.

Opaque primitives can be rendered in any order and are
usually rendered in the order the primitives are submitted.
Generally, the depth test ensures that the final result is the
same. However, different rendering orders of co-planar poly-
gons will give different results.

To render transparent primitives correctly, they need to be
drawn either in a front-to-back or back-to-front order after all
the opaque primitives have been rendered. The application
sorts the transparent primitives into order before submitting
them for rendering, and there are two basic algorithms used:

The application can sort the transparent primitives in a
manner similar to the Painter’s algorithm (an early method for
hidden surface removal). There may be no correct rendering
order when transparent primitives are cyclically interleaved
or penetrated, and in these cases, the application would need
to clip the primitives against each other to generate a defini-
tive order.

The application can submit the transparent primitives mul-
tiple times with a dual depth test to render the transparent
surfaces one layer at a time. A layer is the set of farthest
transparent primitives (or parts there of) that are in front of the
nearest opaque primitives. After each layer is rendered, it is
incorporated into the opaque primitives for the next pass.
Subsequent layers move closer to the eye position. This tech-

10

15

20

25

30

35

40

45

50

55

60

65

4

nique is called depth peeling. Alternatively, it can be imple-
mented with subsequent layers moving farther away from the
eye; however, this requires a triple depth test and is more
expensive to render, but has the advantage of terminating
early once a certain number of layers has been rendered (extra
layers add very little to the fidelity of the image).

Binning has the following benefits:

Reduces the rendering bandwidth by keeping all the depth
and color data on-chip except for the final write to memory
once a bin has been processed. For aliased rendering, the
frame buffer bandwidth is, therefore, a constant one-pixel
write per frame irrespective of overdraw or the amount of
alpha-blending or depth read-modify-write operations. Also,
note that in many cases, there is no need to save the depth
buffer to memory, thereby halving the bandwidth. For full
scene antialiasing (FSAA), this is even more dramatic as
approximately 4x more reads and writes occur while render-
ing (assuming 4-sample FSAA). The down-sampling also is
done from on-chip memory so the bandwidth demand
remains the same as in the non-FSAA case. Some of these
bandwidth savings are lost due to the bandwidth needed to
build and parse the bin data structures, and this will be exac-
erbated with FSAA as the caches will cover a smaller area of
screen (the database will be traversed more times). The over
all bandwidth saving is scene and triangle-size dependent.

Fragment computations or texturing is saved by using
deferred rendering. A bin is traversed twice—on the first (but
simpler pass), the visibility buffer is set up, and no color
calculations are done. On the second pass, only those frag-
ments determined to be visible are rendered—effectively
reducing the opaque depth complexity to 1. As most games
have an average depth complexity >3, this can give up to a 3x
or more boost to the apparent fill rate (depending on the
original primitive submission order).

Less FSAA work. During the first pass of the deferred
rendering operation, the location of edges (geometric and
inferred due to penetrating faces) can be ascertained, and only
those sub-tiles holding edges need to have the multi-sample
depth values calculated and the color replicated to the covered
sample points. This saves cycles to update the multi-sample
buffers and any program cost for alpha-blending.

Stochastic super sampling FSAA. The contents of a bin are
rendered multiple times with the post-transformed primitives
being jittered per pass. This is similar to accumulation buff-
ering at the application level but occurs without any applica-
tion involvement (motion blur and depth of field effects can-
not be done). It has superior quality and smaller memory
footprint than multi-sample FSAA; however, it is slower as
the color is computed at each sample point (unlike multi-
sample where one color per fragment is calculated).

The T&L and rasterisation work proceed in parallel with no
fine grain dependencies so a bottle neck in one part will not
stall the other. This will still happen at frame granularity, but
within a frame, the work flow will be much smoother.

Memory footprint can be reduced when the depth buffer
does not need to be saved to memory. With FSAA, the depth
and color sample buffers are rarely needed after the filtered
color has been determined. Note that as all the memory is
virtual, space can be allocated for these buffers (in case of a
premature flush), but the demand will only be made on the
working set if a flush occurs. Note that the semantics of
OpenGL can make this hard to use.

Multiple Simultaneous Bin Sizes

In the present inventions, the conflicting requirements
between the database-building and traversal (i.e. display)
phases are resolved by allowing the database bin size to be
different from the display bin size. The database bin size is

US 9,349,215 B1

5

some multiple of the bin display bin size (now call a sub-bin),
and when there are multiple sub-bins in a bin, each bin is
traversed multiple times for display, and the rasterizer dis-
cards primitives outside of the current sub-bin. This allows a
trade off between memory bandwidth consumed for database
building and bandwidth consumed for display, particularly
when the display traversal is done multiple of times.

In addition to the above-listed advantages, the disclosed
innovations, in various embodiments, also provide one or
more of at least the following advantages:

Increased speed.

Increased efficiency.

Allows for tradeoff between memory bandwidth con-
sumed for database building and bandwidth consumed for
display.

Reduces the burden of reading in primitives that will be
discarded when outside of the current sub-bin with the use of
an optional bounding box per primitive.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed inventions will be described with reference
to the accompanying drawings, which show important
sample embodiments of the invention and which are incorpo-
rated in the specification hereof by reference, wherein:

FIG. 1 depicts a screen divided into sub-bins.

FIG. 2 depicts a primitive on a screen that is divided into
conventional bins.

FIG. 3 depicts the same primitive on a screen whose bins
are further divided into sub-bins.

FIG. 4 is a flowchart of the building database phase of the
methods and systems of the present application.

FIG. 5 is a flowchart of a conventional rendering process.

FIG. 6 is aflowchart of the rendering process utilized by the
methods and systems of the present application.

FIGS. 1A-A, 1A-B, and 1A-C are block diagrams of the
P20 core architecture.

FIG. 1B is a block diagram of T&L Subsystem 1A100.

FIG. 1C is a block diagram of Binning Subsystem 1A110.

FIG. 1D is a block diagram of WID/Subsystem 1A150.

FIG. 1E is ablock diagram of Visibility Subsystem 1A160.

FIG. 1F is a block diagram of the first half of Fragment
Subsystem 1A170.

FIG. 1G is a block diagram of the second half of Fragment
Subsystem 1A170.

FIG. 1H is a block diagram of SD Subsystem 1A180.

FIG. 11 is a block diagram of Pixel Subsystem 1A190.

FIG. 1] is an overview of a computer system, with a ren-
dering subsystem, which advantageously incorporates the
disclosed graphics architecture.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The numerous innovative teachings of the present applica-
tion will be described with particular reference to the pres-
ently preferred embodiment (by way of example, and not of
limitation).

Multiple Simultaneous Bin Sizes

The database-building and traversal (i.e. display) phases
have conflicting requirements, at least within the bounds of
current technology:

For efficient database building, the bin size should be as
large as possible so as to minimize the number of bins a
primitive can overlap. Typical screen sizes are 1280x1024 so
a single bin this size would be ideal from a database-building
perspective.

10

15

20

25

30

35

40

45

50

55

60

65

6

For efficient display, the z and color buffers for a bin must
fit in on-chip memory (typically a cache) as the whole pur-
pose is to save external memory bandwidth. The typical on-
chip memory budget may be sufficient to hold 128x64 pixels,
but antialiasing can drop down to 32x32 pixels as each pixel
now has to hold multiple z and color samples. This translates
to 160 to 1280 bins respectively.

A further tension arises to keep the number of bins down as
each bin requires some dedicated registers to manage state
tracking and update pointers, and to this end, the number of
bins has been limited to a maximum of 256.

These conflicts are resolved by allowing the database bin
size to be different from the display bin size. The database bin
size is some multiple of the bin display bin size (now call a
sub-bin), and when there are multiple sub-bins in a bin, each
bin is traversed multiple times for display, and the rasterizer
discards primitives outside of the current sub-bin. This allows
a trade off between memory bandwidth consumed for data-
base building and bandwidth consumed for display, particu-
larly when the display traversal is done multiple of times.

When a sub-bin is smaller than a bin, it is advantageous to
make the bin smaller to keep the bandwidth cost of repeated
traversal down as a smaller bin will more than likely hold
fewer primitives.

The rasterizer is very efficient at discarding primitives that
are outside of the current sub-bin being processed. In order to
do this, every new vertex in the primitive needs to be read in,
and this costs 16 bytes of memory bandwidth. Parameters
associated with a vertex are only read in later after the primi-
tive (or part of the primitive) has passed visibility testing. A
triangle will, therefore, take between 4+16 and 4+16*3 bytes
to read in depending on the number of new vertices to repre-
sent it. The initial 4 is the number of bytes a primitive takes to
store in a bin record. It is desirable to reduce the burden of
reading in primitives that will be discarded when outside of
the current sub-bin, and to do this, an optional bounding box
per primitive has been added. This bounding box can be
encoded in 4 bytes so at a cost of 8 bytes, a primitive can now
be tested if it is in the current sub-bin—a saving of 12 to 44
bytes when this test fails or an overhead of 4 bytes when it
passes. This really helps small primitives (that are likely to
fail many sub bins) and does not really cost large primitives as
the overhead is usually lost in the bandwidth savings due to
rendering being on-chip.

The main idea is to separate out the size of the bins used to
build up the database from the size of the bins used to display
it. The bounding box test is an obvious way to skip over
primitives outside of a sub-bin, but not in a bin, and has many
parallels in computer graphics.

FIG. 1 depicts a screen divided into sub-bins. Screen 110
shows a sub-bin area 113 that is used for display. Screen 110
also shows a bin area 111 for which a database is built.
Linked-list 120 shows a sample embodiment of the bin
records associated with bin area 111. List 130 shows a sample
embodiment of the information associated with bin record p
of linked-list 120. Vertex butfer 140 shows a sample embodi-
ment of a vertex buffer and its correlation to the vertices
associated with primitive 10 of bin record p.

FIG. 2 depicts primitive A on a screen that is divided into
conventional bins. For each bin, there is a separate list show-
ing the primitives that affect the pixels of that particular bin.

FIG. 3 depicts the same primitive on a screen whose bins
are further divided into sub-bins. The lists for the whole bins
are still the same as in the FIG. 2. However, in this example,
sub-bins 6 ,, 6, 6, and 6, share the same list that indicates
that primitive A does not affect any of the sub-bins. Sub-bins

US 9,349,215 B1

7
11, 11B>He, “"d HD also share the same list even though
primitive A only affects subs 11, and 11, and not sub-bins
11.and 11,,.

FIG. 4 is a flowchart of the building database phase of the
methods and systems of the present application. For each
primitive on the screen (step 401), each bin (step 403) must be
tested to determine if the pixels of that particular bin are
affected by the primitive (step 405). If it is not, the system
moves on to test the next bin (back to step 403). If it is
affected, the system then adds the primitive to that bin’s list
(step 407). The system must then determine if the bin just
tested is the last bin of the screen (step 409). If it is not, the
system then moves on to the next bin (back to step 403). If it
is the last bin of the screen, the system moves on to the next
primitive (step 411). If it is determined that there is another
primitive to be processed (step 413), the system then moves
on to that primitive (back to step 401). If there are no further
primitives to be processed, the building database process
ends.

FIG. 5 is a flowchart of a conventional rendering process.
For each bin on the screen, the system gets a primitive from
that bin’s list (step 510). The system then paints the pixels of
the bin corresponding to the primitive (step 520). The system
must then determine if the primitive just rendered was the last
primitive on that bin’s list (step 530). If it is not, the system
then renders the next primitive on that bin’s list (back to step
510). If it is, the system moves on to the next bin (step 540).

FIG. 6 is aflowchart of the rendering process utilized by the
methods and systems of the present application. For each
sub-bin (step 610), the system gets a primitive from the whole
bin’s list (step 620). The system must then determine if the
primitive affects the pixels of that particular sub-bin (step
630). If it does not, then the system gets the next primitive
from the whole bin’s list (back to step 620). If it does, the
system then paints the pixels of the sub-bin corresponding to
the primitive (step 640). The system must then determine if
the primitive just rendered was the last primitive on the whole
bin’s list (step 650). If it is not, the system moves on to the
next primitive on that bin’s list (back to step 620). If it is, the
system moves on to the next sub-bin (step 660).

P20 Architecture

The following description gives details of a sample
embodiment of the preferred rendering accelerator chip (re-
ferred to as “P20” in the following document, although not all
details may apply to every chip revision marketed as P20).
The following description gives an overview of the P20 Core
Architecture and largely ignores other important parts of P20
such as GPIO and the Memory subsystem.

P20 is an evolutionary step from P10 and extends many of
the ideas embodied in P10 to accommodate higher perfor-
mance and extensions in APIs, particularly OpenGL 2 and
DX9.

The main functional enhancements over P10 are the inclu-
sion of a binning subsystem and a fragment shader targeted
specifically at high level language support.

The P20 architecture is a hybrid design employing fixed-
function units where the operations are very well defined and
programmable units where flexibility is needed. No attempt
has been made to make it backwards compatible, and a major
rewrite of the driver software is expected. (The architecture
will be less friendly towards software—changes in the API
state will no longer be accomplished by setting one or more
mode bits in registers, but will need a new program to be
generated and downloaded when state changes. More work is
pushed onto software to do infrequent operations such as
aligning stipple or dither patterns when a window moves.)

10

15

20

25

30

35

40

45

50

55

60

65

8

General Performance Goals

The general raw performance goals are:

64 fragment/cycle WID/scissor/area stipple processing;

64 fragments/cycle Z failure (visibility testing);

16 fragments/cycle fill rate at 32 bpp (depth buffered with
flat or Gouraud shading);

6 fragments/cycle for single texture (trilinear) operations;

3 cycle single pixel Gouraud shaded depth buffered tri-
angle rate;

4-sample multi sample operation basically for free; and

400 MHz operational frequency (This frequency assumes a
0.13 micron process. A 200 MHz design speed at 0.18 micron
scales by 25% going to a 0.15 micron process, and this scales
again by 25% going to 0.13 according to TSMC).

The architecture has been designed to allow a range of
performance trade-offs to be made, and the first-instantiated
version will lie somewhere in the middle of the performance
landscape.

Isochronous Operation

Isochronous operation is where some type of rendering is
scheduled to occur at a specific time (such as during frame
blanking) and has to be done then irrespective of what ever
other rendering may be in progress. GDI+/Longhorn is intro-
ducing this notion to the Windows platform. The two solu-
tions to this problem are to have an independent unit to do this
so the main graphics core does not see these isochronous
commands or to allow the graphics core to respond to pre-
emptive multitasking.

The first solution sounds the simplest and easiest to imple-
ment, and probably is, if the isochronous stream were limited
to simple bits; however, the functionality does not have to
grow very much (fonts, lines, stretch blits, color conversion,
cubic filtering, video processing, etc.) before this side unit
starts to look more and more like a full graphics core.

The second solution is future proof and may well be more
gate-efficient as it reuses resources already needed for other
things. However, it requires an efficient way to context
switch, preferably without any host intervention, and a way to
suspend the rasterizer in the middle of a primitive.

Fast context switching can be achieved by duplicating reg-
isters and using a bit per Tile message to indicate which
context should be used or a command to switch sets. This is
the fastest method but duplicating all the registers (and WCS)
will be very expensive and sub setting them may not be very
future proof if a register is missed out that turns out to be
needed.

As any context-switchable state flows through into the
rasterizer, of the pipeline that it goes through is the Context
Unit. This unit caches all context data and maintains a copy in
the local memory. A small cache is needed so that frequently
updating values such as mode registers do not cause a signifi-
cant amount of memory traffic. When a context switch is
needed, the cache is flushed, and the new context record read
from memory and converted into a message stream to update
downstream units. The message tags will be allocated to
allow simple decode and mapping into the context record for
both narrow and wide-message formats. Some special cases
on capturing the context, as well as restoring it, will be needed
to look after the cases where keyhole loading is used, for
example during program loading.

Context switching the rasterizer part way through a primi-
tive is avoided by having a second rasterizer dedicated to the
isochronous stream. This second rasterizer is limited to just
rectangles as this fulfils all the anticipated uses of the isoch-
ronous stream. (Ifthe isochronous stream wants to draw lines,

US 9,349,215 B1

9

for example, then the host software can always decompose
them into tiles and send the tile messages just as if the raster-
izer had generated them.)

There are some special cases where intermediate values
(such as the plane equations) will need to be regenerated, and
extra messages will be sent following a context switch to
force these to occur. Internal state that is incremented, such as
glyph position and line stipple position, needs to be handled
separately.

T&L contextis saved by the Bin Manager Unit and restored
via the GPIO Context Restore Unit. The Bin Manager, Bin
Display, Primitive Setup and Rasterizer units are saved by the
Context Unit and restored via the GPIO Context Restore Unit.

Memory Bandwidth

Memory bandwidth is a crucial design factor, and every
effort has been made to use the bandwidth effectively; how-
ever, there is no substitute for having sufficient bandwidth in
the first place. A simple calculation shows that 32 bits per
pixel, Z-buffered, alpha-blended rendering takes 16 bytes per
fragment so a 16 fragment-per-cycle architecture running at
400 MHz needs a memory bandwidth of 102 GB/s. Add in
memory inefficiencies (page breaks, refresh) and video
refresh (fairly insignificant in comparison to the rendering
bandwidth), and this probably gets up at 107 GB/s or so.
(With an 8-filter pipe system, turning on textures will
decrease this figure to approximately 51 GB/s because the
number of fragments per cycle will halve. Textures can be
stored compressed so a 32-bit texture will take one byte of
storage so the increase in bandwidth due to texture fetches
will be reduced (5 bytes were assumed in the calculations—4
bytes from the high resolution texture map per fragment and
4 bytes per four fragments for the low resolution map)).

The memory options are as follows:

DDR2 SDRAM running at 500 MHz has a peak bandwidth
of 16 GB/s when the memory is 128-bits wide, or 32 GB/s
when 256-bits wide. There are no real impediments to using
this type of memory, but increasing the width beyond 256 bits
is not feasible due to pin count and cost.

Embedded DRAM or IT RAM. eRAM is the only technol-
ogy that can provide these very high bandwidth rates by
enabling very wide memory configurations. eRAM comes
with a number of serious disadvantages: There is a high
premium on the cost of the chips as they require more manu-
facturing steps (for eDRAM); they are foundry-specific, and
with some foundries, the logic speed suffers. Only a modest
amount of e(RAM (say 8 MBytes) can fit onto a chip economi-
cally. This is far short of what is needed, particularly with
higher-resolution and deep-pixel displays. eRAM really
needs to be used as a cache (so it is back to relying on high
locality of reference and reuse of pixel data to give a high
apparent bandwidth to an economical, external memory sys-
tem).

Change the rules. If the screen were small enough to fit into
an on-chip cache (made from eRAM or more traditional
RAM), then most of this rendering bandwidth will be
absorbed internally. Clearly, the screen cannot be made small
enough or the internal caches big enough, but by sorting the
incoming geometry and state into small cache-sized, screen-
aligned regions (called bins, buckets, chunks and, confus-
ingly, tiles in the literature) and rendering each bin in turn
allow this to be achieved. This is accomplished by spending
the memory bandwidth in a different way (writing and read-
ing the bin database) so provided that the database bandwidth
is less than the rendering bandwidth and can be accommo-
dated by the external memory bandwidth, the goal has been
effectively achieved.

15

20

40

45

10

P20 uses an (optional) binning style architecture together
with state of the art DDR2 memory to get the desired perfor-
mance. Binning also offers some other interesting opportuni-
ties that will be described later.

Binning

Binning works by building a spatially-sorted scene
description before rendering to allow the rendering of each
region (or bin) to be constrained to fit in the caches. The
building of the bin database for one frame occurs while the
previous frame is rendered. (Frame means more than just the
displayed frame. Intermediate ‘frames’, such as generated by
render-to-texture operations, also are included in this defini-
tion. Any number of frames may be held in the bin data
structures for subsequent rendering; however, it is normal to
buffer only one final display frame to reserve interactivity and
reduce the transport delay in an application or game.)

Binning has the following benefits:

Reduces the rendering bandwidth by keeping all the depth
and color data on-chip except for the final write to memory
once a bin has been processed. For aliased rendering, the
frame buffer bandwidth is, therefore, a constant one-pixel
write per frame irrespective of overdraw or the amount of
alpha-blending or depth read-modify-write operations. Also,
note that in many cases, there is no need to save the depth
buffer to memory, thereby halving the bandwidth. For FSAA,
this is even more dramatic as approximately 4x more reads
and writes occur while rendering (assuming 4-sample
FSAA). The down-sampling also is done from on-chip
memory so the bandwidth demand remains the same as in the
non-FSAA case. Some of these bandwidth savings are lost
due to the bandwidth needed to build and parse the bin data
structures, and this will be exacerbated with FSAA as the
caches will cover a smaller area of screen (the database will be
traversed more times). The over all bandwidth saving is scene
and triangle-size dependent.

Fragment computations or texturing is saved by using
deferred rendering. A bin is traversed twice—on the first (but
simpler pass), the visibility buffer is set up, and no color
calculations are done. On the second pass, only those frag-
ments determined to be visible are rendered—effectively
reducing the opaque depth complexity to 1. As most games
have an average depth complexity >3, this can give up to a 3x
or more boost to the apparent fill rate (depending on the
original primitive submission order).

Less FSAA work. During the first pass of the deferred
rendering operation, the location of edges (geometric and
inferred due to penetrating faces) can be ascertained, and only
those sub-tiles holding edges need to have the multi-sample
depth values calculated and the color replicated to the covered
sample points. This saves cycles to update the multi-sample
buffers and any program cost for alpha-blending.

Order Independent Transparency. Each bin region has a
pair of bin buffers —one holds the opaque primitives and the
other holds the transparent primitives. After the opaque bin is
rendered, the transparent bin is rendered multiple times until
all the transparency layers have been resolved. The layers are
resolved in a back to front order, and successive layers touch
fewer and fewer fragments.

Stochastic super sampling FSAA. The contents of a bin are
rendered multiple times with the post-transformed primitives
being jittered per pass. This is similar to accumulation buff-
ering at the application level but occurs without any applica-
tion involvement (motion blur and depth of field effects can-
not be done). It has superior quality and smaller memory
footprint than multi-sample FSAA; however, it is slower as
the color is computed at each sample point (unlike multi-
sample where one color per fragment is calculated).

US 9,349,215 B1

11

The T&L and rasterisation work proceed in parallel with no
fine grain dependencies so a bottle neck in one part will not
stall the other. This will still happen at frame granularity, but
within a frame, the work flow will be much smoother.

Memory footprint can be reduced when the depth buffer
does not need to be saved to memory. With FSAA, the depth
and color sample buffers are rarely needed after the filtered
color has been determined. Note that as all the memory is
virtual, space can be allocated for these buffers (in case of a
premature flush), but the demand will only be made on the
working set if a flush occurs. Note that the semantics of
OpenGL can make this hard to use.

The bin database holds the post-transformed primitive data
and state. Only primitives that have passed clipping and cull-
ing will be added to the database, and great care is taken to
ensure this data is held in a compact format with a low build
and traversal cost. However, if there is not enough memory to
hold the bin data structures, then two portions of the memory
are allocated: one for state and primitive information and the
other for vertex data. Both regions can be 256 MB in size. It
is unlikely, therefore, that the bins will need to be prematurely
flushed before all the data has been seen. Reserving such large
amounts of memory, however, may be problematic in some
systems. This memory is virtual memory. Therefore, in these
extreme scenes, performance will gradually degrade (as
pages are swapped out of on-card memory), but all the algo-
rithms and optimizations will continue. Nevertheless, the
problem of running out of memory on the ultra-extreme
scenes, or maybe because less generous state/primitive and
vertex buffers have been allocated, must be addressed.

When the buffers overtlow, the scene is effectively ren-
dered in several ‘passes’, and the memory footprint savings is
lost, but most of the bandwidth savings still remain. For each
pass, the results of the previous pass need to be loaded, and the
results of the current pass saved. The rendering bandwidth
requirement for the depth and color buffers is, therefore,
#pixels™((#passes*2)—1)*bytes per pixel for depth and color.
Therefore, provided each pass holds a reasonable amount of
geometry, there is still large savings. Clearly, depth complex-
ity plays an important role in this, but on complex scenes that
will overtlow the bin data structure buffers, there will usually
be high-depth complexity.

When there is premature flushing, the order-independent
binning and stochastic super-sampling algorithms break as
they rely on having all the scene present before they start. A
premature flush also will disable edge tracking so the correct
image will be generated, albeit at a lower performance.

A block diagram for the core of P20 is shown in FIG. 1A.
Some general observations:

General control, register loading, and synchronising inter-
nal operations are all done via the message stream.

The message stream, for the most part, does not carry any
vertex parameter data (other than the coordinate data).

The message stream does not carry any pixel data except
for upload/download data and fragment coverage data. The
private data paths give more bandwidth and can be tailored to
the specific needs of the sending and receiving units.

The Fragment Subsystem can be thought of as working in
parallel but is, in fact, physically connected as a daisy chain to
make the physical layout easier.

GPIO

There are two independent command streams—one servic-
ing the GP stream (for 3D and general 2D commands), and
one servicing the [sochronous stream. The isochronous com-
mand unit has less functionality as it does not need, for
example, to support vertex arrays.

10

15

20

25

30

35

40

45

50

55

60

65

12

GPIO performs the following distinct operations:

Input DMA

The command stream is fetched from memory (host or
local as determined by the page tables) and broken into mes-
sages based on the tag format. The message data is padded out
to 128 bits, if necessary, with zeros, except for the last 32 bits
which are set to floating point 1.0. (This allows the short hand
formats for vertex parameters to be handled automatically.)
The DMA requests can be queued up in a command FIFO or
can be embedded into the DMA bufter itself, thereby allow-
ing hierarchical DMA (to two levels). The hierarchical DMA
is useful to pre-assemble common command or message
sequences.

Circular Buffers

The circular buffers provide a mechanism whereby P20
can be given work in very small packets without incurring the
cost of an escape call to the operating system. These escape
calls are relatively expensive so work is normally packaged
up into large amounts before being given to the graphics
system. This can result in the graphics system being idle until
enough work has accumulated in a DMA buffer, but not
enough to cause it to be dispatched to the obvious detriment of
performance. The circular buffers are preferably stored in
local memory and mapped into the ICD, and chip resident
write pointer registers are updated when work has been added
to the circular buffers (this does not require any operating
system intervention). When a circular buffer goes empty, the
hardware will automatically search the pool of circular buff-
ers for more work and instigate a context switch if necessary.

There are 16 circular buffers, and the command stream is
processed in an identical way to input DMA, including the
ability to ‘call’ DMA buffers.

Vertex Arrays

Vertex arrays are a more compact way of holding vertex
data and allow a lot of flexibility on how the data is laid out in
memory. Each element in the array can hold up to 16 param-
eters, and each parameter can be from one to four floats in
size. The parameters can be held consecutively in memory or
held in their own arrays. The vertex elements can be accessed
sequentially or via one or two-index arrays.

Vertex Cache Control for Indexed Arrays

When vertex array elements are accessed via index arrays
and the arrays hold lists of primitives (lines, triangles or
quads, independent or strips), then frequently the vertices are
meshed in some way that can be discovered by comparing the
indices for the current primitive against a recent history of
indices. If a match is found, then the vertex does not need to
be fetched from memory (or indeed processed again in the
Vertex Shading Unit), thus saving the memory bandwidth and
processing costs. The 16 most recent indices are held.

Output DMA

The output DMA is mainly used to load data from the core
into host memory. Typical uses of this are for image upload
and returning current vertex state. The output DMA is initi-
ated via messages that pass through the core and arrive via the
Host Out Unit. This allows any number of output DMA
requests to be queued.

Shadow Cache

The shadow cache will keep a copy of the input command
stream in memory so it can be reused without an explicit copy.
This helps caching of models in on-card memory behind the
application’s back, particularly when parts of the model are
liable to change.

Format Conversion

The Pack and UnPack units provide programmable support
for format conversion during download and upload of pixel
data.

US 9,349,215 B1

13

T&L Subsystem

Transform and Lighting Subsystem 1A100 is shown in
FIG. 1B.

The main thing to note is that the clipping and culling can
be done before or after the vertex shading operation depend-
ing on Geometry Router Unit 1B103 setting. Doing the clip-
ping and culling prior to an expensive shading operation can,
in some cases, avoid doing work that would be later dis-
carded. A side effect of the cull operation is that the face
direction is ascertained so only the correct side in two-sided
lighting needs be evaluated. (This is handled automatically
and is hidden from the programmer. Silhouette vertices (i.e.
those that belong to front and back facing triangles) are pro-
cessed twice.)

Vertex Parameter Unit 1B101’s main tasks are to track
current parameter values (for context switching and Get
operations), remap input parameters to the slots a vertex
shader has been compiled to expect them in, assist with color
material processing, and parameter format conversion to nor-
malized floating point values.

Vertex Transformation Unit 1B102 transforms the incom-
ing vertex position using a 4x4 transformation matrix. This is
done as a stand alone operation outside of Vertex Shading
Unit 1B106 to allow clipping and culling to be done prior to
vertex shading.

The Geometry Router Unit IB 103 reorders the pipeline
into one of two orders:
Transform—Clipping—Shading—Vertex ~ Generator or
Transform—Shading—Clipping—Vertex Generator so that
expensive shading operations can be avoided on vertices that
are not part of visible primitives.

Cull Clipping Unit 1B104 calculates the sign of the area of
a primitive and culls it (if so enabled). The primitive is tested
against the view frustum and (optionally) user-clipping
planes and discarded if it is found to be out of view. In view,
primitives pass unchanged. The partially in-view primitives
are (optionally) guard band-clipped before being submitted
for full clipping. The results of the clipping process are the
barycentric coordinates for the intermediate vertices.

Vertex Shading Unit 1B 106 is where the lighting and
texture coordinate generation are done using a user-defined
program. The programs can be 1024 instructions long, and
conditionals, subroutines, and loops are supported. The
matrices, lighting parameters, etc. are held in a 512 Vec4
Coefficient memory. Intermediate results are stored either in
a 64-deep vec2 memory or an 8-deep scalar memory, provid-
ing a total of 136 registers. These registers are typeless but are
typically used to store 36-bit floats. The vertex input consists
of 24 Vec4s and are typeless. (One parameter is identified as
the trigger parameter, and this is the last parameter for a
vertex.) The vertex results are output as a coordinate and up to
16 Vec4 parameter results. The parameters are typeless, and
their interpretation depends on the program loaded into Frag-
ment Shading Unit IF 171.

Vertices are entered into the double-buffered input regis-
ters in round robin fashion. When 16 input vertices have been
received or an attempt is made to update the program or
coefficient memories, the program is run. Non-unit messages
do not usually cause the program to run, but they are correctly
interleaved with the vertex results on output to maintain tem-
poral ordering.

Vertex Shading Unit 1B 106 is implemented as a 16-ele-
ment SIMD array, with each element (VP) working on a
separate vertex. Each VP consists of two FP multipliers, an FP
adder, a transcendental unit, and an ALU. The floating point
operations are done using 36-bit numbers (similar to IEEE but
with an extra 4 mantissa bits). Dual mathematical instructions

10

15

20

25

30

35

40

45

50

55

60

65

14

can be issued so multiple paths exist between the arithmetic
elements, the input storage elements, and the output storage
elements.

Vertex Generator Unit 1B105 holds a 16-entry vertex cache
and implements the vertex machinery to associate the stream
of processed vertices with the primitive type. When enough
vertices for the given primitive type have been received, a
GeomPoint, GeomlLine, or GeomTriangle message is issued.
Clipped primitives have their intermediate vertices calculated
here using the barycentric coordinates from clipping and the
post-shading parameter data. Flat shading, line stipple, and
cylindrical texture wrapping are also controlled here.

Viewport Transform Unit 1B107 perspectively divides the
(selected) vertex parameters, and viewport maps the coordi-
nate data.

Polygon Mode Unit 1B108 decomposes the input triangle
or quad primitives into points and/or lines as needed to satisfy
OpenGL’s polymode processing requirements.

The context data for the T&L subsystem is stored in the
context record by Bin Manager Unit 1A113.

Binning Subsystem

Binning Subsystem 1A110 is largely passive when binning
is not enabled, and the messages just flow through; however,
it does convert the coordinates to be screen relative. Stippled
lines are decomposed, and vertex parameters are still inter-
cepted and forwarded to the PF Cache 1C118 to reduce mes-
sage traffic through the rest of the system. The following
description assumes binning is enabled.

Binning Subsystem 1A110 is shown in the FIG. 1C.

Bin Setup Unit 1C111 takes the primitive descriptions (the
Render® messages) together with the vertex positions and
prepares the primitive for rasterization. For triangles, this is
simple as the triangle vertices are given, but for lines and
points, the vertices of the rectangle or square to be rasterized
must be computed from the input vertices and size informa-
tion. Stippled lines are decomposed into their individual seg-
ments as these are binned separately. Binning and rasteriza-
tion occur in screen space so the input window-relative
coordinates are converted to screen space coordinates here.

Bin Rasterizer Unit 1C112 takes the primitive description
prepared by the Bin Setup Unit and calculates the bins that a
primitive touches. A bin can be viewed as a “fat’ pixel as far as
rasterization is concerned as it is some multiple of 32 pixels in
width and height. The rasterizer uses edge functions and does
an inside test for each corner of the candidate bin to determine
if the primitive touches it. The primitive and the group of bins
that it touches are passed to Bin Manager Unit 1C113 for
processing. The bin seeking accurately tracks the edges of the
primitive for aliased rendering; however, antialiased render-
ing can sometimes include bins not actually touched by the
primitive (this is a slight inefficiency but doesn’t cause any
problems downstream).

Bin Manager Unit 1C113 maintains a spatial database in
memory that describes the current frame being built while Bin
Display Unit 1C114 is rendering the previous frame. All
writes to memory go via Bin Write Cache 1C115. The data-
base is divided between a Vertex Buffer and a Bin Record
Buffer. The vertex buffer holds the vertex data (coordinate
and parameters), and these are appended to the bufter when-
ever they arrive. The buffer works in a pseudo circular buffer
fashion and is used collectively by all the bins. The Bin
Record Buffer is a linked list of bin records with one linked
list per bin region on the screen (up to 256) and holds state
data as well as primitive data. A linked list is used because the
number of primitives per bin region on the screen can vary
wildly. When state data is received, it is stored locally until a
primitive arrives. When a primitive arrives, the bin(s) is

US 9,349,215 B1

15

checked to see ifany state has changed since the last primitive
was written to the bin, and the bin updated with the changed
state. Compressed pointers to the vertices used by a primitive
are calculated and, together with the primitive details, are
appended to the linked list for this bin.

Bin Manager Unit 1C113 only writes to memory, and Bin
Write Cache 1A115 handles the traditional cache functions to
minimize memory bandwidth and read/modify/write opera-
tions as many of the writes will only update partial memory
words.

Bin Manager Unit 1C113 also can be used as a conduit for
vertex data to be written directly to memory to allow the
results of one vertex shader to be fed back into a second vertex
shader and can be used, for example, for surface tessellation.
The same mechanism can also be used to load memory with
texture objects and programs.

Bin Display Unit 1C114 will traverse the bin record linked
list for each bin and parse the records, thereby recreating the
temporal stream of commands this region of the screen would
have seen had there been no binning. Prior to doing the
parsing, the initial state for the bin is sent downstream to
ensure all units start in the correct state. Parsing of state data
is simple—it is just packaged correctly and forwarded. Pars-
ing primitives is more difficult as the vertex data needs to be
recovered from the compressed vertex pointers and sent on
before the primitive itself. Only the coordinate data is
extracted at this point—the parameter data is handled later,
after primitive visibility has been determined. A bin may be
parsed several times to support deferred rendering, stochastic
super sampling, and order-independent transparency. Clears
and multi-sampling filter operations can also be done auto-
matically per bin.

The second half of the binning subsystem is later in the
pipeline, but is described now.

Overlap Unit 1C116 is basically a soft FIFO (i.e. if the
internal hardware FIFO becomes full, it will overflow to
memory) and provides buffering between Visibility Sub-
system 1A160 and Fragment Subsystem 1A170 to allow the
visibility testing to run on ahead and not get stalled by frag-
ment processing. This is particularly useful when deferred
rendering is used as the first pass produces no fragment pro-
cessing work so could be hidden under the second pass of the
previous bin. Tiles are run-length encoded to keep the
memory bandwidth down.

The Parameter Fetch (PF) Units will fetch the binned
parameter data for a primitive if, and only if, the primitive has
passed visibility testing (i.e. at least one tile from the primi-
tive is received in the PF Subsystem). This is particularly
useful with deferred rendering where in the first pass every-
thing is consumed by the Visibility Subsystem. The PF Units
are also involved in loading texture object data (i.e. the state
to control texture operations for one of the 32 potentially
active texture maps) and can be used to load programs from
memory into Pixel Subsystem 1A190 (to avoid having to treat
them as tracked state while binning).

PF Address Unit 1C117 calculates the address in memory
where the parameters for the vertices used by a primitive are
stored and makes a request to PF Cache 1C118 for that param-
eter data to be fetched. The parameter data will be passed
directly to PF Data Unit 1C119. It also will calculate the
addresses for texture objects and pixel programs.

PF Data Unit 1C119 will convert the parameter data for the
vertices into plane equations and forward these to Fragment
Subsystem 1A170 (over their own private connection). For
2D rendering, planes can also be set up directly without
having to supply vertex data. The texture object data and pixel
programs also are forwarded on the message stream.

5

10

20

25

30

35

40

45

50

55

60

65

16

Rasterizer Subsystem

The Rasterizer subsystem consists of a Primitive Setup
Unit, a Rasterizer Unit and a Rectangle Rasterizer Unit.

Rectangle Rasterizer Unit 1A120, as the name suggests,
will only rasterize rectangles and is located in the isochronous
stream. The rasterization direction can be specified.

Primitive Setup Unit 1A130 takes the primitive descrip-
tions (the Render* messages) together with the vertex posi-
tions and prepares the primitive for rasterization. This
includes calculating the area of triangles, splitting stippled
lines (aliased and antialiased) into individual line segments
(some of this work has already been done in Bin Setup Unit
1C111), converting lines into quads for rasterization, convert-
ing points into screen-aligned squares for rasterization and
AA points to polygons. Finally, it calculates the projected x
and y gradients from the floating point coordinates to be used
elsewhere in the pipeline for calculating parameter and depth
gradients for all primitives.

The xy coordinate input to Rasterizer Unit 1A140 is 2’s
complement 15.10 fixed point numbers. When a Draw™ com-
mand is received, the unit will then calculate the 3 or 4 edge
functions for the primitive type, identify which edges are
inclusive edges (i.e. should return inside if a sample point lies
exactly on the edge; this needs to vary depending on which is
the top or right edge so that butting triangles do not write to a
pixel twice) and identify the start tile.

Once the edges of the primitive and a start tile are known,
the rasterizer seeks out screen-aligned super tiles (32x32
pixels) which are inside the edges or intersect the edges of the
primitive. (In a dual P20 system, only those super tiles owned
by a rasterizer are visited.) Super tiles that pass this stage are
further divided into 8x8 tiles for finer testing. Tiles that pass
this second stage will be either totally inside or partially
inside the primitive. Partial tiles are further tested to deter-
mine which pixels in the tile are inside the primitive, and a tile
mask is built up. When antialiasing is enabled, the partial tiles
are tested against the user-defined sample points to build up
the coverage (mask or value) for each pixel in the tile.

The output of the rasterizer is the Tile message which
controls the rest of the core. Each Tile message holds the tile’s
coordinate and tile mask (among other things). The tiles are
always screen-relative and are aligned to tile (8x8 pixel)
boundaries. Before a Tile message is sent, it is optionally
scissored and masked using the area stipple pattern. The
rasterizer will generate tiles in an order that maximizes
memory bandwidth by staying in page as much as is possible.
Memory is organized in 8x8 tiles, and these are stored linearly
in memory. (A 16x4 layout in memory is also supported as
this is more suitable for video display, but this is largely
hidden from most of the core units (some of the address and
cache units need to take it into account)).

The rasterizer has an input coordinate range of 16K, but
after visible rectangle clipping, this is reduced to O . . . 8K.
This can be communicated to the other units in 10-bit fields
forx andy as the bottom 3 bits can be omitted (they are always
0). Destination tiles are always aligned as indicated above, but
source tiles can have any alignment (they are read as textures).

Context Unit

The isochronous stream and the main stream join into a
common stream at Context Unit 1A145. Context Unit 1A145
will arbitrate between both input streams and dynamically
switch between them. This switching to the isochronous
stream normally occurs when the display reaches a user-
defined range of scanlines. Before the other stream can take
over, the context of the current stream must be saved, and the

US 9,349,215 B1

17

context for the new stream restored. This is done automati-
cally by Context Unit 1A145 without any host involvement
and takes less than 3 uS.

As state or programs for the downstream units pass through
Context Unit 1A145, it snoops the messages and writes the
data to memory. In order to reduce the memory bandwidth,
the context data is staged via a small cache. The allocation of
tags has been done carefully so messages with common
widths are grouped together and segregated from transient
data. High-frequency transient data such as vertex parameters
are not context switched as any isochronous rendering will set
up the plane equations directly rather than via vertex values.

Context Unit 1A145 will only switch the context of units
downstream from it. A full context switch (as may be required
when changing from one application to another) is initiated
by the driver using the ChangeContext message (or may
happen automatically due to the circular buffer scheduling).
The context saving of upstream units prior to Bin Manager
Unit 1C113 are handled by Bin Manager Unit 1C113 (to
prevent T&L state updates from causing premature flushing
when binning) Units between Bin Manager Unit 1C113 and
Context units will dump their context out, often using the
same messages which loaded it in the first place, which Con-
text Unit 1A145 will intercept and write out to memory. The
Context Restore Unit (in the GPIO) will fetch the context data
for the upstream units (loaded using their normal tags) while
Context Unit 1A145 will handle the downstream units. A full
context switch is expected to take less than 20uS.

The isochronous stream has its own rasterizer. This raster-
izer can only scan convert rectangles and is considerably
simpler and smaller than the main rasterizer. Using a second
rasterizer avoids the need to context switch the main raster-
izer part way through a primitive which is very desirable as it
is heavily pipelined with lots of internal state.

WID Subsystem

The WID (window ID) subsystem 1A150 basically handles
pixel-level ownership testing when the shape of windows or
the overlapping of windows is too complicated to be repre-
sented by the window clippers in Rasterizer Unit 1A140. The
WID buffer (8-bits deep) also is used by the Video Subsystem
to control per window double-butfering and color table selec-
tion.

The block diagram of the WID subsystem is shown in FIG.
1D.

The subsystem operates in one of two modes:

Pixel Ownership mode. In this mode, the Tile message is
modified to remove any pixels not owned by this context.

Directed Buffer mode. The pixels being displayed are a
composite of up to 4 buffers, depending on the front/back and
stereo state of each window. A 2D GDI operation has no idea
about this and just wants to update the displayed pixels. In this
mode, the Tile message is sent for each active buffer with the
tile mask reduced to just include those pixels being displayed
from that specific bufter (obviously no message is sent if no
pixels are being displayed).

WID Address Unit 1D151 calculates the address of the tile
in the WID buffer and requests it from WID Cache 1D152.
When WID testing is enabled, a Clear command is expanded
into ClearTile commands for the clear region so WID testing
can be applied to the individual tiles.

WID Cache 1D152, on a miss, will request the tile from
memory and, when it is loaded, will do the Pixel Ownership
test (assuming this is the mode of operation) and store the
results of the test in the cache. Storing the test result instead of
the WID values allows the cache to be 8 times smaller. The
cache is organized as 8 super tiles (or 8K pixels) and is
read-only so never needs to write stale data back to memory.

10

15

20

25

30

35

40

45

50

55

60

65

18

WID Data Unit 1D153 does little more than AND the result
mask with the tile mask when pixel ownership testing is
enabled. For directed buffer testing, it gets WID values for
each pixel in the tile and constructs up to 4 Tile messages
depending on which buffer(s) each pixel is being displayed in
and sends them downstream with the appropriate color buffer
selectors.

Visibility Subsystem

Visibility Subsystem 1A160 allows visibility (i.e. depth)
testing to be done before shading so the (expensive) shading
can be avoided on any fragments that will be immediately
discarded.

The block diagram is shown in FIG. 1E.

Visibility Subsystem 1A160 replaces the router found in
early chips that reordered the pipeline to get this same effect.
Having a separate subsystem is more expensive than the
router but has some significant advantages:

The router system had to be changed to be in fragment-
depth order whenever alpha-testing was enabled so the early
depth test was lost. Now the early depth test can be enabled in
all cases, even if the visibility buffer cannot be updated in
some modes.

The visibility testing happens at the fragment level and not
at the sample level so the test rate does not decrease when
antialiasing.

Conservative testing allows some shortcuts to be made that
enhances performance without increasing gate cost.

It helps with the deferred rendering operation (when bin-
ning) as the first pass can be done really fast and produces no
message output. This first pass can often be overlapped with
the fragment shading of the previous bin

It simplifies physical layout.

Vis Address Unit 1E161 calculates the address of the tile in
the visibility buffer and issues this to Vis Cache Unit 1E162.
Some commands such as Clear are also ‘rasterized’ locally.

Visibility Setup Unit 1E163 takes the coordinate informa-
tion for the primitive (that the tile belongs to) and the deriva-
tive information provided by Primitive Setup Unit 1A130 and
calculates the plane equation values (origin, dzdx, and dzdy
gradients) for the depth value. These are passed to the Vis
Data Unit 1E164 so the depth plane equation can be evaluated
across the tile.

The Vis Cache holds 8 super tiles of visibility information
and will read memory when a cache miss occurs. The miss
also may cause a super tile to be written back to memory (just
the enclosed tiles that have been dirtied). The size of the cache
allows a binned region to be 128x64 pixels in size and nor-
mally no misses would occur during binning. Additional flags
are present per tile to assist in order-independent transparency
and edge tracking. The visibility buffer is a reduced spatial
resolution depth buffer where each 4x4 sub tile is represented
by a single-depth value (or two when multi-sample edge
tracking to allow edges caused by penetrating faces to be
detected). The lower spatial resolution reduces the cache size
by 16x and allows a whole 8x8 tile to be checked with a
modest amount of hardware. All of the data needed to process
atile are transferred in a single cycle to/from Vis Data Unit IE
164.

Vis Data Unit IE 164 uses the plane equation generated by
Vis Setup Unit 1E163 and the vis buffer data provided by Vis
Cache 1E162 for this tile to check if any of the 4x4 sub tiles
are visible. Just the corners of each sub tile are checked, and
only if all the corners are not visible will the sub tile be
removed from the original tile. (A consequence of this is that
a surface made up from small (i.e. smaller than a sub tile)
primitives will not obscure a further primitive, even with front
to back rendering.). When binning and multi-sampling, the

US 9,349,215 B1

19

minimum and maximum depth values per sub tile are held in
the visibility buffer (for edge tracking) so that only those sub
tiles with edges need to be multi-sampled. A local tile store is
updated with the results, and this acts as an LO cache to Vis
Cache IE 162 to avoid the round trip read-after-write hazard
synchronization when successive primitives hit the same tile.

Fragment Subsystem

The Fragment Subsystem consists of the Fragment Shad-
ing Unit, the Fragment Cache, the Texture Filter Arbiter and
two Filter Pipes.

The block diagram is shown in FIG. 1F.

The n fragment subsystems are replicated to achieve the
desired performance. Logically, the subsystems are orga-
nized in parallel with each one handling every n” tile; how-
ever, the physical routing of the fan-out and fan-in networks
makes this hard to do without excessive congestion. This is
solved by daisy-chaining the fragment shaders in series and
using suitable protocols to broadcast plane information, com-
mon state, to distribute work fairly and ensure the tile’s results
are restored to temporal order. From a programmer’s view-
point, there only appears to be one fragment subsystem.

The fragment subsystem is responsible for calculating the
color of fragments, and this can involve arbitrary texture
operations and computations for 2D and 3D operations. All
blits are done as texture operations. (Pixel Subsystem 1A190
can do screen-aligned blits (i.e. copy from the back buffer to
the front buffer); however, using texture operations should
allow more efficient streaming of data.)

Fragment Shading Unit 1F171 will run a program (or
shader) up to 4 times when it receives a Tile message—i.e.
once per active sub tile. Typically, a shader will calculate a
texture coordinate from some plane equations and maybe
global data, request a texture access from one of the Filter
Pipes, and when the texel data is returned combine it with
other planes, values, or textures to generate a final color. The
final color is sent as fragment data to Pixel Subsystem 1A190.
A key part of the design of Fragment Shading Unit [F 171 is
its ability to cope with the long latency from making a texture
request to the results arriving back. This is done by running
multithreads—each sub tile’s shader is run as a separate
thread, and when the thread accesses a resource that is not
ready (the texture result is one such example), the thread is
suspended, and the next available thread run. This way, the
computational resources are kept busy, but given the short
length of many of the shaders, the cost of thread-switching
must be lightweight to allow switching every few cycles.
Thread-switching does not involve any context save and
restore operations—the registers used by each thread are
unique and not shared. It is too expensive to provide each
thread with a maximal set of resources (i.e. registers) so the
resources are divided up among the threads, and the number
of threads depends on the resource complexity of the shader.
There can be a maximum of 16 threads, and they can work on
one or more primitives.

Fragment Shading Unit IF 171 is an SIMD architecture
with 16 scalar PE processors. Vector instructions can be effi-
ciently encoded, and the main arithmetic elements include a
floating point adder and a floating point multiplier. More
complex arithmetic operations such as divide, power, vector
magnitude, etc. are computed in the Filter Pipe. Format con-
version can be done in-line on received or sent data. The
instructions and global data are cached, and data can be read
and written to memory (with some fixed layout constraints) so
a variable stack is supported, thereby arbitrary, long, and
complex programs to be implemented. Multi-word (and for-

10

15

20

25

30

35

40

45

50

55

60

65

20

mat) fragment data can be passed to Pixel Subsystem 1A190,
and depth and/or stencil values generated for SD Subsystem
1A180.

Fragment Cache Unit 1F172 provides a common path to
memory when instruction or global cache misses occur (the
actual caches for these are part of Fragment Shading Unit
1F171) and a real cache for general memory accesses. These
memory accesses are typically for variable storage on a stack,
but can also be used to read and write buffers for non Tile
based work.

Texture Filter Arbiter 1F173 will distribute texture and
compute requests amongst multiple Filter Pipes (two in this
case) and collate the results. Round robin distribution is used.

Fragment Mux Unit 1F175 takes the fragment data stream
and message stream from the last Fragment Shading Unit and
generates a fragment stream to the SD Data Unit 1H183, Pixel
Data Unit 11192, and a message stream to SD Address Unit
1H181.

Filter Pipe Subsystem

The main job of Filter Pipe Subsystem 1A170 is to take
commands from Fragment Shading Unit IF 171 and do the
required texture access and filtering operations. Much of the
arithmetic machinery can also be used for evaluating useful,
but comparatively infrequent, mathematical operations such
as reciprocal, inverse square root, log, power, vector magni-
tude, etc.

Texture LOD Unit 1G171°s main job is to calculate the
perspectively correct texture coordinates and level of detail
for the fragments passed from Fragment Shading Unit 1F171.
The commands are for a sub tile’s worth of processing so the
first thing that is done is to serialize the fragments so the
processing in this unit and the rest of the filter pipe is done one
fragment at a time. Local differencing on 2x2 groups of
fragments is done to calculate the partial derivatives and
hence the level of detail.

Texture Index Unit 1G172 takes the u, v, w, LOD and cube
face information for a fragment from the Texture LOD Unit
1G171 and converts it into the texture indices (i, j, k) and
interpolation coefficients depending on the filter and wrap-
ping modes in operation. Texture indices are adjusted if a
border is present. The output of this unit is a record which
identifies the 8 potential texels needed for the filtering, the
associated interpolation coefficients, map levels, and a face
number.

Primary Texture Cache Unit 1G173 uses the output record
from Texture Index Unit 1G172 to look up in its cache direc-
tory whether the required texels are already in the cache and
if so where. Texels which are not in the cache are passed to the
request daisy chain so they can be read from memory (or the
secondary cache) and formatted. The read texture data passes
through this unit on the way to Texture Filter Unit 1G174
(where the data part of the cache is held) so the expedited
loading can be monitored and the fragment delayed if the
texels it requires are not present in the cache. Expedited
loading of the cache and FIFO buffering (between the cache
lookup and dispatch operations) allows for the latency for a
round trip to the secondary cache without any degradation in
performance; however, secondary cache misses will intro-
duce stalls. (It is very likely that some texture access patterns
(bilinear minification, for example) or simultaneous misses in
all texture pipes will also cause some stalls. The impact of
these could be reduced by making the latency FIFO deeper.)

The primary cache is divided into two banks, and each bank
has 16 cache lines, each holding 16 texels in a 4x4 patch. The
search is fully associative, and 8 queries per cycle (4 in each
bank) can be made. The replacement policy is LRU, but only
on the set of cache lines not referenced by the current frag-

US 9,349,215 B1

21

ment or fragments in the latency FIFO. The banks are
assigned so even mip map levels or 3D slices are in one bank
while odd ones are in the other. The search key is based on the
texel’s index and texture ID, not addresses in memory (saves
having to compute 8 addresses). The cache coherency is
intended only to work within a sub tile or maybe a tile, and
never between tiles. (Recall that the tiles are distributed
between pipes so it is very unlikely adjacent tiles will end up
in the same texture pipe and hence Primary Texture Cache
Unit 1G173.)

Texture Filter Unit 1G174 holds the data part of the pri-
mary texture cache in two banks and implements a trilinear
lerp between the 8 texels simultaneously read from the cache.
The texel data is always in 32-bit color format, and there is no
conversion or processing between the cache output and lerp
tree. The lerp tree is configured between the different filter
types (nearest, linear, ID, 2D, and 3D) by forcing the 5 inter-
polation coefficients to be 0.0, 1.0 or taking their real value.
The filtered results can be further accumulated (with scaling)
to implement anisotropic filtering before the final result is
passed back to Fragment Shading Unit IF 171 (via Texture
Filter Arbiter IF 173).

Texture Infrastructure

The commands and state data (texture object data) arrive at
the Texture Address Unit via a request daisy chain that runs
through all the Texture Primary Cache Units. The protocol on
the request chain ensures all filter pipes are fairly served, and
correct synchronization enforced when global state is
changed.

The block diagram is shown in FIG. 1G.

Texture Address Unit 1G175 calculates the address in
memory where the texel data resides. This operation is shared
by all filter pipes (to save gates by not duplicating it), and in
any case, it only needs to calculate addresses as fast as the
memory/secondary cache can service them. The texture map
to read is identified by a 5-bit texture ID, its coordinate (i, j, k),
amap level, and a cube face. This together with local registers
allows a memory address to be calculated. This unit only
works in logical addresses, and the translation to physical
addresses and handling any page faulting is done in the
Memory Controller. The address of the texture map at each
mip map level is defined by software and held in the texture
object descriptor. The maximum texture map size is 8Kx8K,
and they do not have to be square (except for cube maps) and
can be any width, height or depth. Border colors are converted
to a memory access as the border color for a texture map is
held in the memory location just before the texture map (level
0).

Once the logical address has been calculated, it is passed on
to Secondary Texture Cache Unit 1G176. This unit will check
if the texture tile is in the cache and if so will send the data to
Texture Format Unit 1G177. If the texture tile is not present,
then it will issue a request to the Memory Controller and,
when the data arrives, update the cache and forward the data
on. The cache lines hold a 256-byte block of data, and this
would normally represent an 8x8 by 32 bpp tile, but could be
some other format (8 or 16 bpp, YUV, or compressed). The
cache is 4-way set associative and holds 64 lines (i.e. for a
total cache size of 16 Kbytes), although this may change once
some simulations have been done. Cache coherence with the
memory is not maintained, and it is up to the programmer to
invalidate the cache whenever textures in memory are edited.
Secondary Texture Cache 1G176 capitalizes on the coher-
ency between tiles or sub tiles when more than one texture is
being accessed.

Texture Format Unit 1G177 receives the raw texture data
from Texture Secondary Cache Unit 1G176 and converts it

10

15

20

25

30

35

40

45

55

60

65

22

into the single, fixed-format Texture Filter Unit 1G174 works
in (32 bpp 4x4 sub tiles). As well as handling the normal 1, 2,
3, or 4-component textures held as 8, 16, or 32 bits, it also
does YUV 422 conversions (to YUV 444) and expands the
DX-compressed texture formats. Indexed (palette) textures
are not handled directly but are converted to one of the texture
formats when they are downloaded.

The formatted texel data is distributed back to the origina-
tor of the request via the data daisy chain that runs back
through all the filter pipes. If afilter pipe does not match as the
original requester, it passes on the data, otherwise it removes
it from the data chain.

The daisy chain method of distributing requests is used
because it simplifies the physical layout of the units on the die
and reduces wiring congestion.

SD Subsystem

SD Subsystem 1A180 is responsible for the depth and
stencil processing operations. The depth value is calculated
from the plane equation for each fragment (or each sample
when multi sample antialiasing), or can be supplied by Frag-
ment Shading Unit 1F171.

A block diagram of SD Subsystem 1A180 is shown in FIG.
1H.

SD Address Unit 1H181, inresponse to a SubTile message,
will generate a tile/sub tile addresses and pass this to SD
Cache 1H182. When multi-sample antialiasing is enabled,
each sample will have its tile/sub tile address-generated and
also output a SubTile message. All addresses are aligned on
tile boundaries. SD Address Unit 1H181 will generate a series
of'addresses for the Clear command and also locally expand
FilterColor and MergeTransparencylayer commands when
binning (if necessary).

SD Cache 1H182 has 8 cache lines, and each cache line can
hold a screen-aligned super tile (32x32). The super tile may
be partially populated with tiles, and the tiles are updated on
a sub tile granularity. Flags per sub tile control fast clearing
and order-independent transparency operations. The cache
size is dictated by binning—the larger the better, but practical
size constrains limit us to 128x64 pixels for aliased rendering
or 32x32 pixels when 8 sample multi sampling is used. The
fast clear operation sets all the fast clear flags in a super tile in
one cycle (effectively clearing 4K bytes), and SD Data Unit
1H183 will substitute the clear value when a sub tile is pro-
cessed. SD Data Unit 1H183 also will merge the old and new
fragment values for partial sub tile processing.

SD Setup Unit 1H184 takes the coordinate information for
the primitive (that the sub tile belongs to), the sample number,
and the derivative information provided by Primitive Setup
Unit 1A130 and calculates the plane equation values (origin,
dzdx, and dzdy gradients) for the depth value. These are
passed to SD Data Unit 1H183 so the depth plane equation
can be evaluated across the sub tile. The sample number
(when multi sampling) selects the jittered offset to apply to
the plane origin. [0232] SD Data Unit 1H183 implements the
standard stencil and depth processing on 16 fragments (or
samples) at a time. The SD buffer pixels are held in byte
planar format in memory and are always 32-bits deep. Con-
version to and from the external format of the SD buffer is
done in this unit. The updated fragment values are written
back to the cache, and the sub tile mask modified based on the
results of the tests. Data is transferred for the 16 fragments 32
bits at a time to boost the small primitive processing rate.

Pixel Subsystem

Pixel Subsystem 1A190 is responsible for combining the
color calculated in Fragment Shading Unit 1F171 with the
color information read from the frame buffer and writing the
result back to the frame buffer. Its simplest level of processing

US 9,349,215 B1

23

is a straight replace but could include antialiasing coverage,
alpha blending, dithering, chroma-keying, and logical opera-
tions. More complex operations such as deeper pixel process-
ing, accumulation buffer operations, multi-buffer operations,
and multi-sample filtering can also be done.

A block diagram of Pixel Subsystem 1A190 is shown in
FIG. 11

Pixel Address Unit 11191, in response to a SubTile mes-
sage, will generate a number of tile addresses. Normally, this
will be a single destination address, but could be multiple
addresses for deep pixel or more advanced processing. The
generation of addresses and the initiation of program runs in
Pixel Data Unit 11192 are controlled by a small user program.
All addresses are aligned on tile boundaries. Pixel Address
Unit 11191 will generate a series of address for the Clear
command and also locally expand FilterColor and Merge-
Transparencylayer commands when binning (if necessary).
Download data is synchronized here, and addresses automati-
cally generated to keep in step.

Pixel Cache 11193 is a subset of SD Cache 1H182 (see
earlier). Pixel Cache 11193 lacks the flags to control order-
independent transparency, but has a 64-bit wide clear value
register (to allow 64-bit color formats). Partial sub tile
updates are handled by merging the old and new data in Pixel
Data Unit 11192.

The heart of this subsystem is Pixel Data Unit 11192. This
is a 4x4 SIMD array of float 16 processors. The interface to
Pixel Cache 11193 is a double-buffered, 32-bit register, and
the fragment data interface is a FIFO-buffered, 32-bit register
per SIMD element. The tile mask can be used and tested in the
SIMD array, and the program storage (128 instructions) is
generous enough to hold a dozen or so small programs. Pro-
grams will typically operate on one component at a time;
however, to speed up the straight replace operation, a “built-
in” Copy program can be run that will copy 32 bits at a time.
Pixel data received from Pixel Cache 11193 can be inter-
preted directly as byte data or as float 16. No other formats are
supported directly, but they can be emulated (albeit with aloss
of speed) with a suitable program in the SIMD array.

In order to support some of the more complex operations
such as multi-buffer, accumulation buffering, multi-sample
filtering, etc., several programs can be run on the same tile
with different frame bufter and global data before the desti-
nation tile is updated. The fragment color data can be held
constant for some passes or changed, and each pass can write
back data to Pixel Cache 11193. Each SubTile message has an
extra field to indicate which tile program (out of 8) to run and
afield which holds the pass number (so that filter coefficients,
etc. can be indexed). Any data to be carried over from one pass
to the next is held in the local register file present in each
SIMD element. Typically, the first tile program will do some
processing (i.e. multiply the frame buffer color with some
coefficient value) and store the results locally. The middle tile
program will do the same processing, maybe with a different
coefficient value, but add to the results stored locally. The last
tile program will do the same processing, add to the results
stored locally, maybe scale the results and write them to Pixel
Cache 11193. Multi-buffer and accumulation processing
would tend to run the same program for each set of input data.

Data being transferred into or out of the SIMD array is done
32 bits at a time so the input and output buses connected to
Pixel Cache 11193 are 512 bits each. A small (4 entry) LO
cache is held in Pixel Data Unit 11192 so the round trip via
Pixel Cache 11193 is not necessary for closely repeating sub
tiles.

10

15

20

25

30

35

40

45

50

55

60

65

24

Host Out Unit

Host Out Unit 1A195 takes data forwarded on by Pixel
Subsystem 1A190 via the message stream to be passed back
to the host. Message filtering is done on any message reaching
this point other than an upload data message; a sync message
or a few other select messages are removed and not placed in
the output FIFO. Statistics gathering and profile message
processing can be done, and the results left directly in the
host’s memory.

FIG. 1] is an overview of a computer system, with a video
display adapter 445 in which the embodiments of the present
inventions can advantageously be implemented. The com-
plete computer system includes in this example: user input
devices (e.g. keyboard 435 and mouse 440); at least one
microprocessor 425 which is operatively connected to receive
inputs from the input devices, across e.g. a system bus 431,
through an interface manager chip 430 which provides an
interface to the various ports and registers; the microproces-
sor interfaces to the system bus through perhaps a bridge
controller 427; a memory (e.g. flash or non-volatile memory
455, RAM 460, and BIOS 453), which is accessible by the
microprocessor; a data output device (e.g. display 450 and
video display adapter card 445) which is connected to output
data generated by the microprocessor 425; and a mass storage
disk drive 470 which is read-write accessible, through an
interface unit 465, by the microprocessor 425.

Optionally, of course, many other components can be
included, and this configuration is not definitive by any
means. For example, the computer may also include a CD-
ROM drive 480 and floppy disk drive (“FDD”) 475 which
may interface to the disk interface controller 465. Addition-
ally, L.2 cache 485 may be added to speed data access from the
disk drives to the microprocessor 425, and a PCMCIA 490
slot accommodates peripheral enhancements. The computer
may also accommodate an audio system for multimedia capa-
bility comprising a sound card 476 and a speaker(s) 477.

According to a disclosed class of innovative embodiments,
there is provided: A method for rendering 3D graphics, com-
prising the steps of: a) separating a display space into multiple
bins, each containing multiple pixels of said display space; b)
for each of said bins, defining multiple respective sub-bins
such that the size of said bin is a multiple of the size of said
respective sub-bins; ¢) generating a database which shows
which primitives affect respective ones of said bins, but does
not identify which sub-bins are affected within an affected
one of said bins; and d) traversing respective sub-bins d1)
using said database to identify which primitives affect the bin
which contains said respective sub-bin, and also d2) using an
additional test to identify which of the primitives identified in
said step d1 affect said respective sub-bin.

According to a disclosed class of innovative embodiments,
there is provided: A rendering method, comprising the steps
of: a) separating a display space into multiple bins, each said
bin containing multiple sub-bins, and each said sub-bin con-
taining multiple pixels; and b) repeatedly rendering bins of
said display space, using, for each said bin, only primitives
which affect said bin; wherein a single iteration of said step
b), for at least one of said bins, comprises iterative rendering
of respective sub-bins of said bin; and wherein said rendering
of'a single respective sub-bin comprises traversal of said bin,
while ignoring primitives which do not affect said respective
sub-bin.

According to a disclosed class of innovative embodiments,
there is provided: A method for rendering transformed three-
dimensional primitives, comprising: a) a step for separating a
display space into multiple bins, each said bin containing
multiple sub-bins, and each said sub-bin containing multiple

US 9,349,215 B1

25

pixels; b) a step for preparing a database which identifies, for
ones of said bins, which of the primitives affect said respec-
tive bin, but which does not separately identify which of the
primitives affects particular sub-bins within said respective
bin; and c) a step for repeatedly rendering said sub-bins of
said display space, using, for each said sub-bins, all primitives
which have been identified, in said database, as affecting the
bin to which said respective sub-bin belongs.

According to a disclosed class of innovative embodiments,
there is provided: A rendering method, comprising the steps
of: a) separating a display space into multiple bins, each said
bin containing multiple sub-bins, and each said sub-bin con-
taining multiple pixels; b) recording which bins are touched
or affected for each primitive in the display, c¢) creating a
database of the primitives to be rendered in each bin from the
information generated in step b); and d) for each bin touched
or affected by a primitive, processing all sub-bins which fall
within said respective bin.

According to a disclosed class of innovative embodiments,
there is provided: A method for 3D graphics rendering, com-
prising the steps of: a) separating a display space into bins,
each containing multiple pixels of said display space; b) for
each of said bins, defining multiple respective sub-bins such
that the size of said bin is a multiple of the size of said
respective sub-bins; ¢) traversing respective sub-bins c1)
using said database to identify which primitives affect the bin
which contains said respective sub-bin, and also ¢2) using a
bounding box test to identify which of the primitives identi-
fied in said step c1 affect said respective sub-bin; and d) using
the results of said bounding box test to d1) discard primitives
that are outside of the current sub-bin being processed; and
d2) read in the parameters associated with every vertex that
affects the current sub-bin.

According to a disclosed class of innovative embodiments,
there is provided: A computer system for 3D graphics render-
ing comprising: a host processor; and a 3D graphics accel-
erator comprising: a device for a) separating a display space
into multiple bins, each containing multiple pixels of said
display space; b) for each of said bins, defining multiple
respective sub-bins such that the size of said bin is a multiple
of the size of said respective sub-bins; and ¢) generating a
database which shows which primitives affect respective ones
of'said bins, but does not identify which sub-bins are affected
within an affected one of said bins.

According to a disclosed class of innovative embodiments,
there is provided: A graphics rendering module, comprising:
multiple database bins, each containing multiple pixels of a
display space; for each of said bins, multiple respective sub-
bins such that the size of said bin is a multiple of the size of
said respective sub-bins; and a device for traversing respec-
tive sub-bins using a database to identify which primitives
affect the bin which contains said respective sub-bin, and also
using an additional test to identify which of the primitives
identified affect said respective sub-bin.

According to a disclosed class of innovative embodiments,
there is provided: A graphics rendering architecture, compris-
ing: a) a means for separating a display space into multiple
bins, each said bin containing multiple sub-bins, and each
said sub-bin containing multiple pixels; and b) a means for
repeatedly rendering bins of said display space, using, for
each said bin, only primitives which affect said bin; wherein
a single iteration of said means b), for at least one of said bins,
comprises iterative rendering of respective sub-bins of said
bin; and wherein said rendering of a single respective sub-bin

25

35

40

45

55

26

comprises traversal of said bin, while ignoring primitives
which do not affect said respective sub-bin.

DEFINITIONS

Following are short definitions of the usual meanings of
some of the technical terms which are used in the present
application. (However, those of ordinary skill will recognize
whether the context requires a different meaning) Additional
definitions can be found in the standard technical dictionaries
and journals.

A “primitive” or “fragment” is any fundamental geometric
form, such as a triangle, used for building 3-D computer
graphics.

Modifications and Variations

As will be recognized by those skilled in the art, the inno-
vative concepts described in the present application can be
modified and varied over a tremendous range of applications,
and accordingly the scope of patented subject matter is not
limited by any of the specific exemplary teachings given.

Many of the requirements of 3D graphics processing are
quite different from those of earlier attempts to create com-
puter graphics. However, as the evolution of computers and of
visual interfaces continues, it is expected that many of the
disclosed innovations will be directly applicable to systems
which go beyond 3D graphics. For example, such contem-
plated further applications can include stereoscopic graphics
systems, systems which provide 4D processing (e.g. for
motion filtering of video streams), and/or anamorphic image
transformation.

Inthe presently preferred embodiment, a bounding box test
is used to determine if a primitive should be discarded. How-
ever, alternatively, and less preferably, other tests may be
used.

Also, the present application uses a 4:1 ratio of sub-bins to
whole bins as a sample embodiment. However, other less-
preferable ratios may be used, such as 8:1 and 16:1.

In another class of embodiments, the display space is
1600x1200 pixels. Of course, other display space sizes are
possible.

In another class of embodiments, the bins are 64x64 pixels.
Of course, other bin sizes are possible.

Note that with regard to the disclosed inventions, a primi-
tive can be any geometric form such as a line, a triangle, or a
rectangle.

Note also that the disclosed inventions can be used with
primitives that are antialiased, as well as those that are not
antialiased.

Additional general background, which helps to show varia-
tions and implementations, may be found in the following
publications, all of which are hereby incorporated by refer-
ence: Advances in Computer Graphics (ed. Enderle 1990);
Angel, Interactive Computer Graphics: A Top-Down
Approach with OpenGL; Angell, High-Resolution Computer
Graphics Using C (1990); the several books of “Jim Blinn’s
Corner” columns; Computer Graphics Hardware (ed. Regh-
batiand Lee 1988); Computer Graphics: Image Synthesis (ed.
Joy et al.); Eberly: 3D Game Engine Design (2000); Ebert:
Texturing and Modelling 2.ed. (1998); Foley et al., Funda-
mentals of Interactive Computer Graphics (2.ed. 1984);
Foley, Computer Graphics Principles & Practice (2.ed. 1990);
Foley, Introduction to Computer Graphics (1994); Glidden:
Graphics Programming With Direct3D (1997); Hearn and
Baker, Computer Graphics (2.ed. 1994); Hill: Computer
Graphics Using OpenGL; Latham, Dictionary of Computer
Graphics (1991); Tomas Moeller and Eric Haines, Real-Time
Rendering (1999); Michael O’Rourke, Principles of Three-

US 9,349,215 B1

27

Dimensional Computer Animation; Prosise, How Computer
Graphics Work (1994); Rimmer, Bit Mapped Graphics (2.ed.
1993); Rogers et al., Mathematical Elements for Computer
Graphics (2.ed. 1990); Rogers, Procedural Elements For
Computer Graphics (1997); Salmon, Computer Graphics
Systems & Concepts (1987); Schachter, Computer Image
Generation (1990); Watt, Three-Dimensional Computer
Graphics (2.ed. 1994, 3.ed. 2000); Watt and Watt, Advanced
Animation and Rendering Techniques: Theory and Practice;
Scott Whitman, Multiprocessor Methods For Computer
Graphics Rendering; the SIGGRAPH Proceedings for the
years 1980 to date; and the IEEE Computer Graphics and
Applications magazine for the years 1990 to date. These
publications (all of which are hereby incorporated by refer-
ence) also illustrate the knowledge of those skilled in the art
regarding possible modifications and variations of the dis-
closed concepts and embodiments, and regarding the predict-
able results of such modifications.

None ofthe description in the present application should be
read as implying that any particular element, step, or function
is an essential element which must be included in the claim
scope: THE SCOPE OF PATENTED SUBJECT MATTER IS
DEFINED ONLY BY THE ALLOWED CLAIMS. More-
over, none of these claims are intended to invoke paragraph
six 0f 35 USC section 112 unless the exact words “means for”
are followed by a participle.

What is claimed is:
1. A method for rendering 3D graphics, comprising:
separating a display space into multiple non-overlapping
bins and sub-bins, each bin containing an integer mul-
tiple of sub-bins, each sub-bin containing multiple pix-
els of said display space, wherein the display space
comprises primitives and displays only sub-bins;
generating a database which shows which primitives affect
respective ones of said bins, but does not identify which
respective sub-bins are affected within an affected one of
said bins, wherein the database only uses bins and not
sub-bins;
using said generated database to identify which of the
primitives affect the bin which contains one of said
respective sub-bins, and also,
without using the database, separately identifying which of
the primitives identified affect said one respective sub-
bin, and
painting pixels on a physical display apparatus, using only
those primitives identified to represent said one respec-
tive sub-bin.
2. The method of claim 1, wherein said maximum number
of bins is 256.
3. The method of claim 1, wherein said display space is
1600x1200 pixels.
4. The method of claim 1, wherein said bins are 64x64
pixels.
5. The method of claim 1, wherein said primitive is a
triangle or line.
6. The method of claim 1, wherein said primitive may be
antialiased or not.
7. A device comprising:
a processor and memory for:
separating a display space into multiple non-overlap-
ping bins and sub-bins, each bin containing an integer
multiple of sub-bins, each sub-bin containing mul-

10

20

25

30

35

40

45

50

55

28

tiple pixels of said display space, wherein the display
space comprises primitives and displays only sub-
bins;
generating a database which shows which primitives
affect respective ones of said bins, but does not iden-
tify which respective sub-bins are affected within an
affected one of said bins, wherein the database only
uses bins and not sub-bins;
using said generated database to identify which of the
primitives affect the bin which contains one of said
respective sub-bins, and also,
without using the database, separately identifying which
of the primitives identified affect said one respective
sub-bin, and
painting pixels on a physical display apparatus, using only
those primitives identified to represent said one respec-
tive sub-bin.
8. The device of claim 7, wherein said maximum number of
bins is 256.
9. The device of claim 7, wherein said display space is
1600x1200 pixels.
10. The device of claim 7, wherein said bins are 64x64
pixels.
11. The device of claim 7, wherein said primitive is a
triangle or line.
12. The device of claim 7, wherein said primitive may be
antialiased or not.
13. A computer system for 3D graphics rendering
comprising:
a host processor;
a display; and
a 3D graphics accelerator comprising: a device for
separating a display space into multiple non-overlap-
ping bins and sub-bins, each bin containing an integer
multiple of sub-bins, each sub-bin containing mul-
tiple pixels of said display space, wherein the display
space comprises primitives and displays only sub-
bins;
generating a database which shows which primitives
affect respective ones of said bins, but does not iden-
tify which respective sub-bins are affected within an
affected one of said bins, wherein the database only
uses bins and not sub-bins;
using said generated database to identify which of the
primitives affect the bin which contains one of said
respective sub-bins, and also,
without using the database, separately identifying which
of the primitives identified affect said one respective
sub-bin, and
painting pixels on a physical display apparatus, using
only those primitives identified to represent said one
respective sub-bin.
14. The system of claim 13, wherein said maximum num-
ber of bins is 256.
15. The system of claim 13, wherein said display space is
1600x1200 pixels.
16. The system of claim 13, wherein said bins are 64x64
pixels.
17. The system of claim 13, wherein said primitive is a
triangle or line.
18. The system of claim 13, wherein said primitive may be
antialiased or not.

